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Persistent transcriptional programmes are 
associated with remote memory

Michelle B. Chen1,5, Xian Jiang2,3,5, Stephen R. Quake1,4 ✉ & Thomas C. Südhof2,3 ✉

The role of gene expression during learning and in short-term memories has been 
studied extensively1–3, but less is known about remote memories, which can persist for 
a lifetime4. Here we used long-term contextual fear memory as a paradigm to probe 
the single-cell gene expression landscape that underlies remote memory storage in 
the medial prefrontal cortex. We found persistent activity-specific transcriptional 
alterations in diverse populations of neurons that lasted for weeks after fear learning. 
Out of a vast plasticity-coding space, we identified genes associated with membrane 
fusion that could have important roles in the maintenance of remote memory. 
Unexpectedly, astrocytes and microglia also acquired persistent gene expression 
signatures that were associated with remote memory, suggesting that they actively 
contribute to memory circuits. The discovery of gene expression programmes 
associated with remote memory engrams adds an important dimension of 
activity-dependent cellular states to existing brain taxonomy atlases and sheds light 
on the elusive mechanisms of remote memory storage.

Long-term memories do not form immediately after learning, but are 
consolidated over time4. Previous studies have identified important 
contributions of molecular and cellular processes to learning and mem-
ory, such as gene expression changes, cAMP signalling and synaptic 
plasticity1, and identified a central role for RNA synthesis and protein 
translation in memory consolidation2. Despite these discoveries, the 
molecular underpinnings of memory consolidation remain elusive. 
For instance, while changes in gene expression are found in the first 
24 h of learning, it is unclear whether these changes are maintained or 
whether new changes are acquired to consolidate a long-term memory 
trace3. Moreover, the dependence on the hippocampus for long-term 
memory is known to degrade over time, with cortical structures such 
as the medial prefrontal cortex (mPFC) becoming increasingly impor-
tant5. Recently, the development of activity-dependent genetic label-
ling tools have allowed identification of sparsely activated neuronal 
ensembles, enabling access to the molecular mechanisms that underlie 
experience-dependent connectivity and plasticity6.

Neuron subtypes in remote memory engrams
To identify and study the transcriptional programmes of neurons 
involved in remote memory, we used TRAP2; Ai14 mice expressing 
iCre-ERT2 recombinase in an activity-dependent manner along with 
a iCre-dependent tdTomato (tdT) reporter allele (Extended Data 
Fig. 1a), enabling us to label memory recall-activated neurons. To 
genetically label the engrams that are associated with remote mem-
ory, we trained mice in a conditioning chamber with three pairs of 
tone–foot shocks on day 0, and induced fear memory recall (FR) on 
day 16 by returning mice to the conditioning chamber. Memory recall 
activates the consolidated memory engrams, thereby labelling the 

neuronal ensemble that encodes the consolidated remote memory7, 
while also inducing memory reconsolidation8. Because the molecular 
and cellular substrates of consolidation and reconsolidation were 
indistinguishable in this paradigm, we denote them here collectively 
as memory consolidation. We used control mice that were not fear 
conditioned but exposed to the recall context (no fear (NF)), fear 
conditioned but not subjected to recall (no recall (NR)), and neither 
fear conditioned nor exposed to the recall condition (homecage 
(HC)) (Fig. 1a–c). All mice were injected with 4-hydroxytamoxifen 
(4-OHT) before the FR procedure (or at the equivalent time) to allow 
activity-dependent production of tdT, thus enabling the distinc-
tion between the molecular programmes that are specific to remote 
memory versus background activation.

Nine days after FR9, single neuronal and non-neuronal cells were col-
lected from the mPFC (Extended Data Fig. 1b) via fluorescence-activated 
cell sorting (FACS) and gating on the tdT signal, followed by plate-based 
single-cell mRNA sequencing (Fig. 1d). The percentage of TRAPed 
cells collected via FACS was significantly higher in FR (about 1.5% of 
all cells) than in other conditions (Extended Data Fig. 2a), further con-
firming that the TRAP2 system captured increased neuronal activity 
during the FR process. We sequenced 3,691 neurons (Snap25 +/tdT + or 
Snap25 +/tdT − mRNA) and 2,672 non-neuronal cells with high quality 
and depth (Extended Data Fig. 1c, d). Unbiased transcriptome clustering 
of cells from all four training conditions allowed the identification of 
major cell types and confirmed the dominance of neurons among tdT + 
cells, whereas tdT − cells comprised both neurons and non-neuronal 
cells (Cldn5 + endothelial, Pdgfra + oligodendrocyte progenitor cells 
(OPCs), Cx3cr1 + microglia and Aqp4 + astrocytes) (Fig. 1d, e, Extended 
Data Fig. 1e). Both tdT + and tdT − cells from FR and control groups were 
represented in all clusters, which suggests that neither the neuronal 
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activation state nor the training paradigm significantly altered funda-
mental cell-type identities (Fig. 1e).

Sub-clustering of 3,691 Snap25 + neurons using the top 2,000 highly 
variable genes revealed seven putative neuron sub-populations—
four glutamatergic (C0, C1, C3 and C5) and three GABAergic neuron 
populations (C2, C4 and C6)—all of which were consistently observed 
throughout four biological replicates (Fig. 2a–c, Extended Data Fig. 2b). 
These are molecularly distinct populations (Fig. 2d), with each subtype 
expressing at least one distinctive marker gene (see Methods; Fig. 2e). 
All subtypes contained tdT + cells, which indicated activation of all neu-
ron subtypes regardless of the training state (Extended Data Fig. 2c). 
A comparison of key layer-specific marker genes (C0-Dkkl1, C1-Rprm, 
C2-Calb2, C3-Tesc, C4-Tnfaip8l3, C5-Tshz2 and C6-Lhx6) to existing 
cortical single-cell expression databases10 confirmed their presence 
in the mPFC (Extended Data Fig. 2d).

Surprisingly, no significant differences were found in the neuron 
subtype composition of TRAPed populations between the FR and 
NF groups (Fig. 2f, Extended Data Fig. 2e), which suggests a lack of 
training-dependent recruitment of neuron types during consolidation 
compared to baseline active populations in a NF memory scenario. Both 
excitatory and inhibitory neuron types were found in active FR popula-
tions, with glutamatergic cells comprising about 60–70%. Within the 
same FR brains, active and inactive populations had roughly similar 
compositions of neuron subtypes, with the exception of C2-Calb2 and 
C3-Tesc, suggesting only slight shifts in the recruitment or retirement 
of neuron subtypes due to activity.

Memory-associated gene expression
To determine whether remote-memory-associated transcriptional 
changes occur in recall-activated neurons, we looked for differentially 
expressed genes (DEGs; log2 fold change (log2FC) > 0.3 and false discov-
ery rate (FDR) < 0.01) in TRAPed FR versus NF cells (Fig. 3a). Single-cell 
resolution enables a comparison of neurons within the same subtype 
and the identification of genes that are specifically associated with 
memory consolidation and recall. Of 23,355 genes, 1,292 were found 

to be consolidation-dependent. Expression patterns indicated an 
overall transcriptional activation, with more genes upregulated than 
downregulated. Interestingly, DEGs were heterogenous across neuron 
subtypes, which suggests that remote memory consolidation involves 
subtype-specific transcriptional programmes (Fig. 3b).

We applied a set of strict criteria to identify possible effector 
genes. First, each DEG had to be differentially expressed in at least 
three-quarters of biological replicates, enforcing reproducibility. The 
removal of DEGs that are also differentially expressed between the 
inactive populations in FR versus NF mice allowed the identification 
of changes that were specific to active populations (Extended Data 
Fig. 3a). Next, DEGs must be differentially expressed when FR cells are 
compared to NR and HC controls, ensuring that DEGs are not just a con-
sequence of a fear experience. Last, DEGs had to pass a permutation test 
with shuffled labels (Extended Data Fig. 3b). These criteria produced 
a set of 99 ‘remote-memory-associated DEGs’ (Fig. 3c; see Methods). 
Several genes encoded proteins with regulatory roles, including known 
regulators of transcription (Hmg20a, Hnrnpk and Zfp706) and transla-
tion (Nck2, Alpl1 and Eif2ak1). Interestingly, even among the condensed 
list of remote-memory-associated DEGs, we found strong enrichments 
in genes encoding proteins involved in vesicle exocytosis (Vamp2, Gdi2, 
Rab15, Rab5a, Rab24, Atp6v0c, Syt13, Stx1b and Nsf), transmembrane 
transport (Slc30a9, Slc25a46, Mfsd14a, Tmem50a, Gpm6a, Mfsd14b 
and Abcf3), dendritic spine organization (Strip1, Pls3 and Gsk3b) and 
long-range intracellular transport (Timm29, Atad1, Pak1, Plehkb2, 
Sarnp, Rtn3, Dmtn, Sar1a and Hid1) (Fig. 3c, Extended Data Fig. 3b, c). 
More than half of the remote-memory-associated DEGs are associated 
with neuronal diseases, suggesting links between the functional role 
of these genes to various memory-affecting neuronal disorders, in 
addition to the regulation of remote memory.

We further investigated the specificity of our findings by analysing 
TRAPed neurons that were activated by a salient experience unrelated 
to fear memory (Extended Data Fig. 4a). Using food deprivation as a sali-
ence signal, we identified TRAPed neuronal ensembles that contained 
the same neuronal subtypes as in TRAPed FR ensembles, but with dif-
ferences in the subtype composition ratios (Extended Data Fig. 4b–d). 
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While we found a total of 143 DEGs (FDR < 0.01) when comparing sali-
ence to no salience groups, there was almost no intersection of these 
DEGs with those found in FR mice (Extended Data Figs. 4e, 5). Thus, 
while new transcriptional programmes are activated in salience ensem-
bles, the nature of these molecular changes is experience-specific and 
probably modulated by the particular valence of and/or functional 
requirements arising from the experience.

Hierarchical clustering of TRAPed FR neurons by the expression levels 
for each remote-memory-associated DEG allowed distinct populations 
of ‘highly activated’ and ‘lowly activated’ cells to emerge, suggesting 
that different transcriptional modules are concertedly regulated during 
memory consolidation in each neuronal subtype (Fig. 3d). To determine 
the subtype specificity of these modules, we found that the fraction of 
cells activated with the subtype-specific DEGs was generally highest in 
the corresponding subtype when compared to the activation levels in 
other subtypes or in the inactive populations (Fig. 3e, Extended Data 
Fig. 6a). Together, this could indicate the presence of subtype-specific 
common regulatory elements.

To address this possibility, we analysed our DEGs using hypergeomet-
ric optimization of motif enrichment (HOMER) to search for common 
regulatory motifs in an unbiased manner (see Methods; Extended Data 
Fig. 6b). We found 12 putative de novo and two known motifs enriched 
within our target DEG set (P < 0.01). While we did not find significant 
enrichment of motifs within subtype-specific DEGs, the Hif1b binding 
motif was found in >40% of total DEGs, including the synaptic transmis-
sion and plasticity-related genes Rab5a, Rab24, Vamp2, Gdi2, Gpm6a, 
Strip1, Ptp4a1, Trim32, Mfsd14a, Mfsd14b and Slc25a46. Interestingly, 
these findings agree with recent studies indicating a potential dual role 
for HIF1 transcription factors during hippocampal-dependent spatial 
learning and consolidation under normoxic conditions11. Interestingly, 
motifs associated with Creb, Nfkb, Cbp and C/ebp—canonical transcrip-
tional regulators of neuronal activity and plasticity12,13—were absent 
near the transcription start site (−400 to +100 bp).

Vesicle exocytosis signatures in memory
To further elucidate the significance of these remote-memory-dependent 
transcriptional programmes, we used STRING to look for known and 
predicted protein–protein interactions. K-means clustering of the gene 
nodes revealed a significantly connected network (P = 1.75 × 10−6) that 
was centred around a large cluster of genes related to vesicle-mediated 
transport, exocytosis and neurotransmitter secretion, all of which were 
highly connected (confidence = 0.4; Extended Data Fig. 6c). Remark-
ably, 20 out of 99 remote-memory-associated DEGs fell within these 
functional categories, including Stx1b, Syt13, Vamp2, the SNAP receptor 
(SNARE) ATPase (Nsf) and the GTPase Rab5a, all of which are function-
ally linked to the SNARE complex and to vesicle exocytosis (Fig. 4a). 
Interestingly, the two most highly and ubiquitously upregulated genes 
across subtypes were Serinc1 and Serinc3, which are thought to be 
serine incorporators14. Notably, phosphatidylserine phospholipids 
are calcium-dependent binding partners for synaptotagmins15, sug-
gesting that Serinc1 and Serinc3 may have important roles in enhanc-
ing phosphatidylserine levels and vesicle membrane fusion during 
memory consolidation. Finally, in situ hybridization confirmed the 
endogenous proportions of neuronal subtypes in TRAPed populations 
(Extended Data Fig. 7a, b), as well as the upregulated expression of key 
remote-memory-associated DEGs, including Serinc3, Syt13, Vamp2 and 
Stx1b in respective neuronal subtypes (Fig. 4b, c, Extended Data Fig. 7c).

Non-neuronal gene expression changes
Remarkably, we discovered that non-neuronal cells also exhibited tran-
scriptional changes associated with remote memory consolidation (FR 
compared to NF mice; Fig. 5a, b, Extended Data Fig. 8a, b). These signa-
tures were distinct from those of neurons, indicating that non-neuronal 
programmes may support maintenance of the remote fear-memory 
trace. Surprisingly, >95% of these DEGs were upregulated, which sug-
gests an overall transcriptional activation during consolidation. Not 
only was this response detectable weeks after the initial learning but 
it was observed even without enrichment of the non-neuronal cells 
directly associated with the TRAPed engram cells (that is, the TRAP 
method is neuron-specific).

Astrocytes and microglia showed the greatest number of tran-
scriptional changes, with 181 and 308 genes perturbed, respectively 
(log2FC > 1 and FDR < 0.01) (Fig. 5c). Most of these DEGs represent 
largely diverging pathways (Fig. 5d). In particular, upregulated astro-
cytic genes were enriched in lipid, cholesterol and steroid metabolic 
functions (Gja1, Hmgcr, Dhcr7, Insig1, Acsl3, Idi1, Acsbg1, 10Asah1 and 
Hacd3) as well as glucose transport (Abcc5, Slc39a1, Slc6a1, Slc27a1, 
Slco1c1, Gnb1 and Ttyh1). Enhanced metabolic support from astrocytes 
may be required during memory consolidation since astrocyte–neu-
ron metabolic coupling is elevated during neuronal activity16. Moreo-
ver, 95 out of 181 astrocyte DEGs were reproduced when comparing 
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FR to NR mice, suggesting that a large portion of DEGs is specific 
to the recall experience itself and not merely a remnant of the fear 
experience.

By contrast, DEGs from microglial cells were enriched in innate 
immunity (Il6r, Stat6, Csf3r, Il1a, Irf5, Cd86, Tnfrsf1b, Ywhaz, Litaf, 
Ptgs1, Gdi2 and Rnf13) and cytoskeletal reorganization/focal adhe-
sion maintenance pathways (Cdc42, Rhoa, Rhoh, Prkcd, Vasp, Arf6, 

Vav1 and Actr2), suggesting that upregulation of specific inflammatory 
molecules and enhancement of cell migration may be involved in the 
maintenance of memory. While less is known regarding the immu-
nomodulatory roles of microglia in memory and learning, previous 
studies have shown that low levels of inflammatory cytokines (such 
as IL-1, IL-6 and tumour necrosis factor) can regulate neuronal circuit 
remodelling and long-term potentiation17.
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In addition to neuron–neuron coupling, communication pro-
grammes between neurons and non-neuronal cells may support 
the memory trace over long periods. We looked for the expression 

of receptors or ligands in non-neuronal cells whose known binding 
partner18 is perturbed in TRAPed FR neurons (Extended Fig. 8c–e). 
We focused on genes that were differentially expressed in both the 
ligand-bound and the receptor-bound cell type (Extended Data 
Fig. 8c). In FR mice, we found upregulation of neuronal neuroligin-1 
and neuroligin-3 (encoded by Nlgn1 and Nlgn3, respectively) and its 
binding partner neurexin-1 (encoded by Nrxn1) on astrocytes, com-
plexes that may enhance neuron–glia adhesions and modulate synap-
tic function19. Thus, the concerted upregulation of these binding pairs 
in FR mice strongly suggests a role for astrocyte–neurexin–neuroligin 
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interactions in the maintenance of synaptic strength during fear 
memory storage.

Discussion
While high-resolution gene expression atlases of the brain have 
provided invaluable information about cellular taxonomy10,20, char-
acterization of activity-dependent states within these cell types is 
necessary to understand how experience modulates gene expres-
sion, synaptic plasticity and neuronal circuitry. The ability to form 
and maintain unique synaptic connections that encode a particular 
memory out of a vast pool of other experiences requires a complex 
coding space. By using a combination of activity-dependent label-
ling of neurons and single-cell transcriptomics, we discovered that 
(1) all mPFC neuron types can be activated during consolidation of 
remote memory via heterogenous transcriptional programmes; (2) 
enhanced membrane fusion and vesicle exocytosis may be a critical 
mode of synaptic strengthening during memory consolidation; (3) 
a specific set of exocytosis-related genes out of a vast coding space 
may be involved in allowing highly unique, experience-specific con-
nections to be made; (4) these particular transcriptional programmes 
are detectable at remote time points and thus are probably involved in 
maintaining the memory trace weeks after learning; and (5) consoli-
dation of remote memory also induces a persistent transcriptional 
programme in astrocytes and microglia.

Deciphering the temporal evolution of engram populations and 
their associated gene programmes through the various stages 
of initial learning, recent memory and remote memory is crucial 
for understanding the basis of conversion of short-term memo-
ries to long-term memories. We found that the majority of gene 
programmes affected in activated neurons during early stages 
of learning21–23 and recent memory24 do not intersect with our 
remote-memory-associated DEGs (Extended Data Fig. 9a), nor 
with genes enriched in TRAPed FR populations over inactive ones 
(Extended Data Fig. 9b). This suggests that remote memory could 
be governed by temporally unique transcriptional programmes. 
However, future experiments using unified technologies to decon-
volve the neuronal compositions of recent and remote engrams and 
identify the immediate transcriptional changes in recent memory 
will be of great importance. Relevant to this point, TRAPed neu-
rons in NR mice also exhibited continuous transcriptional changes 
at moderate levels (when compared to NF mice) (Extended Data 
Fig. 10). However, these DEGs are largely non-intersecting with 
remote-memory-associated DEGs, which suggests that the experi-
ence of fear itself can induce long-lasting changes in gene expression 
programmes and that the process of recall induces new transcrip-
tional programmes in a different set of neurons. The current data 
therefore provide the first step towards deciphering the transcrip-
tional coding landscape that is specifically associated with remote 
memory consolidation.
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Methods

Mice
All animal experiments were conducted following protocols approved 
by the Administrative Panel on Laboratory Animal Care at Stanford 
University. The TRAP2; Ai14 mouse line was kindly gifted by the Luo 
laboratory at Stanford. TRAP2 mice were heterozygous for the Fos2A-iCreER 
allele, and homozygous for Ai14, and were bred with Ai14 homozygous 
mice in the C57BL/6 background. Mice were group-housed (maximum 
five mice per cage) on a 12 h light–dark cycle (07:00 to 19:00, light) with 
food and water freely available. Male mice 42–49 days of age were used 
for all the experiments. Mice were handled daily for 3 days before their 
first behavioural experiment.

Genotyping
The following primers: GAG GGA CTA CCT CCT GTA CC (forward) and 
TGC CCA GAG TCA TCC TTG GC (reverse) were used for genotyping 
of the Fos2A-iCreER allele.

Fear conditioning
The fear conditioning training was performed as previously described25. 
Briefly, mice were individually placed in the fear conditioning chamber 
(Coulbourn Instruments) located in the centre of a sound attenuating 
cubicle, which was cleaned with 10% ethanol to provide a background 
odour. A ventilation fan provided a background noise at approxi-
mately 55 dB. After a 2-min exploration period, three tone–foot shock 
pairings separated by 1-min intervals were provided. The 85 dB 2-kHz 
tone lasted for 30 s, and the foot shocks were at 0.75 mA and lasted for  
2 s. The foot shocks were co-terminated with the tone. The mice 
remained in the training chamber for another 60 s before being 
returned to the home cages. For the context recall, mice were placed 
back into the original conditioning chamber for 5 min 16 days after 
the training. 4-OHT injections were performed immediately (within 
30 min) before the recall experiments. For the HC and the NR groups, 
4-OHT was injected at a similar time when the other two groups were 
subjected to recall. The behaviour of the mice was recorded and ana-
lysed with the FreezeFrame software (v.4; Coulbourn Instruments). 
Motionless bouts that lasted more than 1 s were considered as freeze. 
Data were analysed with the tracking software Viewer III (Biobserve).

Food deprivation
Mice were deprived of food for 16 h, and then 4-OHT was injected to the 
animals and food was returned to one group (salience group) imme-
diately afterwards (within 30 min), while no food was returned to the 
other group (no salience group) until 10 h later.

tdT florescence examination
Mice were deep anaesthetized with tribromoethanol and perfused 
with PBS followed by fixative (4% paraformaldehyde diluted in PBS). 
The brains were then removed and postfixed in 4 °C overnight and 
immersed in 30% sucrose solution for 2 days before being sectioned at 
a thickness of 50 μm on a cryostat (CM3050 S, Leica Biosystems). Imag-
ing was performed with a scanning microscope (BX61VS, Olympus).

Single-cell dissociation and flow cytometry
mPFC regions were microdissected from live vibratome sections (300 μm  
thick) of the prefrontal cortex. Tissue pieces were enzymatically disso-
ciated via a papain-based digestion system (LK003150, Worthington). 
Briefly, tissue chunks were incubated in 1 ml of papain (containing 
l-cysteine and EDTA), DNase and kynurenic acid for 1 h at 37 °C and 5% 
CO2. After 10 min of incubation, tissues were triturated briefly with a 
P1000 wide bore pipette tip and returned. Cells were triturated another 
four times (around 30 each) with a P200 pipette tip over the rest of the 
remaining incubation time. At room temperature, cell suspensions were 
centrifuged at 350g for 10 min, resuspended in 1 ml EBSS with 10% v/v 

ovomucoid inhibitor, 4.5% v/v DNase and 0.1% v/v kynurenic acid, and 
centrifuged again. Supernatant was removed and 1 ml ACSF was added 
to cells. ACSF was composed of: 1 mM KCl, 7 mM MgCl2, 0.5 mM CaCl2, 
1.3 mM NaH2PO4, 110 mM choline chloride, 24 mM NaHCO3, 1.3 mM Na 
ascorbate, 20 mM glucose and 0.6 mM sodium pyruvate. Cells were 
passed through a 70-μm cell strainer to remove debris. Hoechst stain 
was added (1:2,000; H3570, Life Technologies) and incubated in the 
dark at 4 °C for 10 min. Samples were centrifuged (350g for 8 min at 4 °C) 
and resuspended in 0.5 ml of ACSF and kept on ice for flow cytometry.

Cells were sorted via the Sony SH800 into 96-well or 384-well plates 
(Bio-Rad) directly into lysis buffer26 with oligodT, and immediately 
snap frozen until processing. A positive ‘TRAP’ gate was set for cells 
that were both Hoechst+ and tdT +. A negative ‘TRAP’ gate was set for all 
Hoechst+ and tdT − cells in general. No gating on forward or backscatter 
was used to avoid size biases that might be present in a heterogenous 
neuronal population. Each plate was kept on the sorter for <25 min to 
prevent evaporation.

Sequencing
Whole-cell lysis, first-strand synthesis and cDNA synthesis were per-
formed using the Smart-seq-2 protocol as described previously26 in both 
96-well and 384-well formats, with some modifications. After cDNA 
amplification (23 cycles), cDNA concentrations were determined via 
capillary electrophoresis (96-well format) or the PicoGreen quantita-
tion assay (384-well format), and wells were chosen to improve quality 
and reduce cost of sequencing. Only wells with >0.2 ng μl−1 of cDNA were 
selected and cDNA concentrations were subsequently normalized to 
~0.2 ng μl−1 per sample, using the TPPLabtech Mosquito HTS and Mantis 
(Formulatrix) robotic platforms. Libraries were prepared, pooled and 
cleaned using the Illumina Nextera XT kits or in-house Tn5, following 
the manufacturer’s instructions. Libraries were then sequenced on 
Nextseq or Novaseq (Illumina) using 2 × 75-bp paired-end reads and  
2 × 8-bp index reads with a 200 cycle kit (20012861, Illumina). Samples 
were sequenced at an average of 1.5 million reads per cell.

RNAscope
The RNAscope experiment was performed following the manufac-
turer’s instructions using the RNAscope multiplex fluorescent reagent 
kit v2 (323100, ACD). All probes were purchased from existing stocks 
or custom designed from ACD.

Bioinformatics and data analysis
Mapping to the genome. Sequences from Nextseq or Novaseq were 
demultiplexed using bcl2fastq, and reads were aligned to the mm10 
genome augmented with ERCC (External RNA Controls Consortium) 
sequences, using STAR version 2.5.2b. Gene counts were made using 
HTSEQ version 0.6.1p1. All packages were called and run through a 
custom Snakemake pipeline. We applied standard algorithms for cell 
filtration, feature selection and dimensionality reduction. Briefly, genes 
that appeared in fewer than five cells, samples with fewer than 100 genes  
and samples with less than 50,000 reads were excluded from the analy-
sis. Out of these cells, those with more than 30% of reads as ERCC, and 
more than 10% mitochondrial or 10% ribosomal were also excluded 
from analysis. Counts were log-normalized and then scaled where  
appropriate.

Next, the ‘canonical correlation analysis’ function from the Seurat 
package27 was used to align raw data from multiple experiments. Only 
the first ten canonical components were used. After alignment, relevant 
features were selected by filtering expressed genes to a set of ~2,500 
with the highest positive and negative pairwise correlations. Genes 
were then projected into principal component space using the robust 
principal component analysis. Single-cell principal component scores 
and gene loadings for the first 20 principal components were used as 
inputs into Seurat’s (v2) FindClusters and RunTsne functions to cal-
culate 2D tSNE coordinates and search for distinct cell populations. 



Article
Briefly, a shared-nearest-neighbour graph was constructed based 
on the Euclidean distance metric in the principal component space, 
and cells were clustered using the Louvain method. Cells and clusters 
were then visualized using 3D tSNE embedding on the same distance 
metric. A neuron was characterized as ‘TRAPed’ trapped if it satisfied 
two conditions: (1) from the tdT + sort gate (tdT protein positive) and 
(2) tdT mRNA raw count > 0. Neuron subtype marker genes were found 
by using the FindAllMarkers function in Seurat (min.pct = 0.3, thresh.
use = 0.25, min.diff.pct = 0.2). DEG analysis was done by applying 
the Mann–Whitney U-test on various cell populations. Raw P values 
were adjusted to an FDR. Permutation tests were then performed 
on all genes of interest. All graphs and analyses were generated and 
performed in R. GeneAnalytics and GeneCards packages offered 
by the gene set enrichment analysis tool were used for GO/KEGG/
REACTOME pathway analysis and classification of enriched genes 
in each subpopulation.

Finding remote-memory-associated DEGs. To reduce our list 
of DEGs (FR TRAP versus NF TRAP results in 1,291 DEGs, cells from  
4 biological replicates pooled, logFC > 0.3, FDR < 0.01) to only the most 
recall-specific, 4 steps were taken. Analysis was limited to C0–C4 neu-
ron subtypes due to insufficient numbers of cells in C5 and C6 across 
all experimental conditions to make meaningful comparisons. First, 
DEGs are recalculated by assessing each experiment individually us-
ing the whole transcriptome, and only DEGs (via the same criteria as 
pooled) that intersect in three-quarters of replicates are kept. Three 
out of four criteria were chosen as a compromise due to the high strict-
ness of four out of four, which yielded only a maximum of seven DEGs 
(for a neuron subtype). All resulting DEGs are found in the initial DEG 
list (all replicates pooled), indicating that no additional DEGs were 
found as a result of analysing replicates separately. Second, ‘inactive’ 
(tdT-negative) populations were also compared (FR inactive versus NF 
inactive) and any DEGs that intersected with the DEGs left after the first 
criteria, were removed. This ensures that DEGs are activity-dependent, 
and not merely an overall upregulation in all cells due to the experience. 
This routinely removed genes such as Hsp90aa1 and Pcna-ps2. Third, 
the remaining DEGs had to be differentially expressed when FR TRAP 
was compared to either NR TRAP or HC TRAP. This ensures that the 
DEGs are specific to only neuronal ensembles that labelled by memory 
recall, and not due to forms of baseline activity (HC) or activity that 
remained from the initial fear learning (NR). Last, the remaining DEGs 
must pass a permutation test in which the training labels are shuffled 
and a distribution of log2FC is computed based on these labels. The true 
observed logFC must be above the 95th percentile of the distribution 
of the shuffled distribution. After placing these constraints, 99 genes 
remain from the original list of 1,291.

Assessment of activation score. A TRAPed (or inactive) cell is consid-
ered to be ‘activated’ by the remote-memory DEG programme if 25%, 
50% or 75% of the subtype-specific DEGs (remote-memory-associated 
DEGs only) is expressed above the 90th percentile of the distribution of 
that gene in NF TRAP controls from the same subtype. This calculation 
is then repeated with DEG programmes that are specific to each neu-
ronal subtype. The fraction of cells activated with the subtype-specific 
signature is calculated as the number of activated cells divided by all 
cells in the subtype/activity group.

Regulatory motif analysis. Enrichment of known and de  novo 
motifs was found using HOMER by inputting the list of 99 remote- 
memory-associated DEGs and using the function findMotifs.pl and 

the criteria ‘–start -400 -end 100 -len 8,10 -p 2’. The locations of the 
motifs in specific DEGs were found using the -find < motif file > option 
of findMotifs.pl.

RNAscope image analysis. Images were taken using a Nikon Confocal 
Microscope (at ×10 or ×20, NA = 0.45) and images were processed in 
ImageJ to only obtain the mPFC regions. The resulting images were 
fed into a custom image analysis pipeline on CellProfiler (using a com-
bination of the functions IdentifyPrimaryObjects, RelateObjects, 
FilterObjects, MeasureObjectIntensity, ClassifyObjects and Calcu-
lateMath. The custom pipeline can be found in Supplementary Meth-
ods). Briefly, images were corrected with control slides (unstained 
sample and negative control probes) and cells were segmented using 
the DAPI signal. Those harbouring a signal (above a set threshold level) 
for both the subtype marker and the tdT probe were retained. The 
integrated fluorescence intensity of the DEG probe was calculated 
for each DAPI+/subtype+/tdT + cell. Cells that were not double-positive 
were not considered. The integrated fluorescent intensity was then 
normalized to the integrated DAPI signal per cell and results were 
plotted with custom scripts in R.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The accession number for the single-cell RNA sequencing data reported 
in this paper is GSE152632.

Code availability
Custom scripts can be found at https://github.com/mbchen-424/
memory-sc-rnaseq.
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Extended Data Fig. 6 | Neuron subtype-specific activation programs, 
hypothesized protein–protein interactions and upstream regulatory 
motifs. a, Fraction of cells in each neuron subtype that are induced with the 
transcriptional program (that is, DEGs) from a neuron subtype. Overall, the 
activation program of each TRAPed neuron subtype is found to be more 
specific to it than the inactive population, or other subtypes. b, Left, de novo 
regulator motif discovery: analysis was performed using HOMER on the subset 
of 99 remote-memory-associated DEGs by looking at the sequences -400 to 
+100 bp from the TSS. 12 de novo and 2 known motifs were found (only motifs 
with an enrichment P  value <10−2) were kept). Heat map depicts the ‘motif score’ 
of each DEG for each motif, and genes and motifs were clustered via the ward.D 

method. Right, bar graph depicting the percentage of the DEGs (target 
sequences) that possess a match for the motif within -400 to +100 bp from the 
TSS, vs the percentage of background sequences. For de novo motifs, the best 
match gene is listed on the right. HIF1b and HIF1a are matches to known  
motifs. c, Left, hypothesized protein–protein interactions of a subset of 
recall-dependent DEGs (TRAPed FR/NF) using the STRING database (https://
string-db.org/). Only genes that are connected at a confidence level of 0.4 
(medium) are shown. Connections indicate a possible existence of an 
interaction between two proteins. Genes are coloured by up of downregulation 
in FR/NF. Right, same network plot, with nodes coloured by the neuron subtype 
which differentially regulates the DEG.

https://string-db.org/
https://string-db.org/
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Extended Data Fig. 7 | In situ validation of tdT levels, neuronal subtype 
compositions and remote-memory-specific DEGs in the mPFC. a, Ratio of 
Nuclei that are tdT+ (mRNA level) per training condition. Each data point 
represents one region of interest. (mean ± s.d.) b, Ratio of TRAPed cells that are 
positive for a neuronal subtype marker obtained either via the RNA-scope 
method, or by scRNA-seq (mean ± s.e.m.) (see Fig. 2). TRAPed cells are defined 
as DAPI+/tdT+ in RNAscope quantification, and as tdT mRNA count >1 in 

scRNA-seq (post-QC). No significant differences are found between FR and NF 
within either RNAscope or scRNA-methods, indicating no major changes in 
neuronal subtype composition of active populations in different training 
conditions. c, in situ hybridization of key remote-memory specific DEGs 
including Stx1b in Rprm+/tdT + cells, Syt13 in Tnfaip8l3+/tdT + cells, Vamp2 in  
Tesc+/tdT + cells. Scale bars, 100 μm.
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Extended Data Fig. 8 | DEGs and potential cell–cell interactions in 
non-neuronal cells during memory consolidation. a, Volcano plots of 
non-neuronal cell types when comparing cells in FR over NF nice. DEGs (FDR 
>0.01, log2FC >1) are labelled in red, and exemplary DEGs (high log2FC and 
log10FDR) are labelled in black. b, Number of non-neuronal cells collected in 
this study, for each cell type and experimental condition. c, Heat map of a 
subset of neuronal ligands and glial receptors that are found to be differentially 
perturbed upon memory consolidation. Only receptors and ligands which were 

found to be (differentially) expressed are shown. d, Left, heat map of the log2FC 
of DEGs (FR over NF) in neurons that are classified as ligands. Middle and right, 
Sankey plot of known ligand-receptor pairs and heat map of the average scaled 
expression level of the corresponding receptors in each cell type. e, Left, 
heat map of the log2FC of DEGs (FR over NF) in neurons that are classified as 
receptors. Middle and right, Sankey plot of known ligand-receptor pairs and 
heat map of the average scaled expression level of the corresponding ligands in 
each cell type.
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Extended Data Fig. 9 | Comparison of remote-memory DEGs with 
previously published datasets of experience-dependent transcriptional 
activity. a, Left, heat map of the log2FC of all 1,292 DEGs (FDR <0.01, FR over NF, 
all cells pooled) in this manuscript, and their log2FC values in previously 
published datasets of experience-dependent DEGs in activated neurons 
during: recent fear memory retrieval24, associative fear-learning22, post-visual 
stimulus23, or novel environment exposure21. A value of zero log2FC indicates 
the gene was not differentially expressed in a dataset. Right, same as left, but 

now DEGs are filtered down to the ‘Recall-dependent DEG’ set derived from this 
manuscript. Only genes differentially expressed in three out of four replicates 
are remaining. b, Left, log2 fold change heat map of the recall-dependent DEGs 
between tdT + vs tdT − neurons in FR mice (genes are differentially expressed in 
>3/4 replicates) undergoing remote fear memory consolidation. Right, the 
log2FC values of these genes if they are found in previously published datasets 
of experience-dependent DEGs (see a). A value of zero log2FC indicates the 
gene was not differentially expressed in that dataset.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals TRAP2 was generated in a 129Sv/SvJ background. For behavior experiments, they were backcrossed to C57Bl6/J for 3 
generations. Mice were housed at room temperature and 40-60% humidity. 
We have described the usage of C57bl6J mice in the method part of the manuscript. 
Male mice at age between 6-7 weeks were used in this study.

Wild animals None

Field-collected samples None

Ethics oversight All animal procedures followed animal care guidelines approved by Stanford University's Administrative 
Panel on Laboratory Animal Care (APLAC)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation mPFC regions were micro-dissected from live vibratome sections (300 um thick) of the prefrontal cortex. Tissue pieces were 
enzymatically dissociated via a papain-based digestion system (Worthington, Cat # LK003150). Briefly, tissue chunks were 
incubated in 1mL of papain (containing L-cysteine and EDTA), DNAse, and kyneurenic acid for 1 hour at 37C and 5% CO2. After 
10 min of incubation, tissues were triturated briefly with a P1000 wide bore pipette tip and returned. Cells were triturated 
another 4 times (~30 each) with a P200 pipette tip over the rest of the remaining incubation time. At room temperature, cell 
suspensions were centrifuged at 350g for 10 min, resuspended in 1mL of EBSS with 10% v/v ovomucoid inhibitor, 4.5% v/v 
DNAse and 0.1% v/v kyneurenic acid, and centrifuged again. Supernatant was removed and cells 1mL ACSF was added. ACSF was 
composed of: 1mM KCl, 7mM Mgcl2, 0.5 mM Cacl2, 1.3 mM NaH2PO4, 110 mM choline chloride, 24mM NaHCO3, 1.3 mM Na 
Ascorbate, 20mM glucose and 0.6mM sodium pyruvate. Cells were passed through a 70 um cell strainer to remove debris. 
Hoescht stain was added (1:2000, Life Technologies, Cat #H3570) and incubated in the dark at 4C for 10 min. Samples were 
centrifuged (350g for 8 min at 4C) and resuspended in 0.5mL of ACSF and kept on ice for flow cytometry. 

Instrument Sony SH800

Software Sony SH800

Cell population abundance tdtomato+/ Hoescht+ cells were ~0.5-2% of all total events

Gating strategy There was gating on BSC or FSC as size distribution of neurons/non-neuronal cells of interest is unknown. Only gating for a 
population that was double positive for Hoescht (above 1000 arbitrary fluorescent units) and tdTomato (above 10e4 arbitrary 
fluorescent units) was used (see Extended Data 2 for examples). 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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